
GLG 490 Numerical Methods
Intro to C Programming – part 1

 In this course, we will learn the fundamentals of C programming. Entire courses can be taught on
the subject, so we will restrict ourselves to the basics and learn enough to perform most scientific
computations. For those that wish to learn more or have a text which may further explain the
fundamentals, the following text is one which I recommend:

Title: C
Author: Klaus Schroder
Publisher: Addison-Wesley
ISBN: 0-201-75878-4

The easiest way to learn programming is by example, and that is how we will proceed in this course.
Many examples will be provided in these course notes, and the parts that are to be typed are marked as
bold.

Compiling your first code

In the simplest manner, a code involves a source file and an executable file. We will see that we may also
have include files as well, but we’ll worry about that later. The source file (often called source code)
contains the text that lists your programming instructions. It is conventional to give these files the suffix
.c (e.g. mycode.c). The compiler is a program that converts your programming text to the binary language
that the computer can understand. This binary file is called the executable. Once your code is compiled
and the executable file is created, you run your code by running the executable.

There are many compilers on the market today, but most scientists use one created by the freeware GNU
project. In this class we will exclusively use the GNU compiler which is often called the gcc compiler.
One thing to note is that different compilers may be picky with the style of code that you write. We will
write completely in standard C language, so all compilers should be able to understand our codes,
however, you may notice that different compilers may produce different warning messages. For example
the gcc compiler on kaibab may (and likely will) give different warnings than a compiler on your own
Linux machine.

Just a note about warnings and errors. A warning means that the compiler is pointing out to you that there
may be a problem with your code, but it isn’t certain. In fact, we will probably find many warnings in
this course, but most of them are harmless. With a warning, the compiler will complete the compilation
of the code and produce an executable file. An error, on the other hand, means that the compiler found
something major wrong with your code, and the compilation ends, and the executable file is not created.

First lets write the “skeleton” of every C code. Every code that you write will start with these lines.
Make a file named mycode.c and type the following:

GLG 490 Numerical Methods
1

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

return 0;
}

In C, all of the code that you write is contained within the main function named “main”.
Now, lets instruct the code to do something. Add the following line in the main function:

fprintf(stdout,”Hello World\n”);

Now, lets compile the code. First exit the text editor. On the Linux command line type:

gcc mycode.c

If it worked successfully, you should see the created executable file named a.out

Run the executable by typing a.out

We can name our executable something other than a.out by compiling it this way.

gcc –o mycode.x mycode.c

Try this. Note, mycode.x can be replaced with any name that you would like, but its conventional to use
the same name as the source code, but with a .x instead of a .c

GLG 490 Numerical Methods
2

Working with numerical data types (integers, floats, and doubles), variables, and operators

Type out the following code in the file tutorial1.c. Afterwards, the instructor will go through and explain
line by line:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

/* this is what a comment looks like */

/* declarations */
int number_of_apples, number_of_oranges;
int number_of_people;
int total_number_of_fruit;

float apples_per_person;
float oranges_per_person;

double number1, number2;
double my_result;

/* end of declarations */

number_of_apples=20;
number_of_oranges=15;
number_of_people=12;

total_number_of_fruit=number_of_apples+number_of_oranges;

apples_per_person=number_of_apples/number_of_people;
oranges_per_person=(number_of_oranges*1.0)/(number_of_people*1.0);

fprintf(stdout,”There are %d pieces of fruit total\n\n”, total_number_of_fruit);
fprintf(stdout,”There are %f apples per person\n”, apples_per_person);
fprintf(stdout,”There are %f oranges per person\n\n”, oranges_per_person);

number1=27.1;
number2=21.2;

my_result=number1+number2;
fprintf(stdout,”The sum of the numbers is %f\n”,my_result);

GLG 490 Numerical Methods
3

my_result=number1-number2;
fprintf(stdout,”Number 1 is bigger than number 2 by %f\n”,my_result);

my_result=number1*number2;
fprintf(stdout,”The product of numbers is %f\n”,my_result);

my_result=number1/number2;
fprintf(stdout,”Number 1 divided by number 2 is %f\n”,my_result);

return 0;
}

Compile and run your code. The output should look like this:

There are 35 pieces of fruit total

There are 1.000000 apples per person
There are 1.250000 oranges per person

The sum of the numbers is 48.300000
Number 1 is bigger than number 2 by 5.900000
The product of numbers is 574.520000
Number 1 divided by number 2 is 1.278302

Whats wrong with the number of apples per person? This is an example of the pitfalls of integer division,
something to be very careful about. See how we rectified the problem when calculating the number of
oranges. You must always do this if you don’t want to make this mistake!

Now, go through a fix your code to correctly determine the number of apples per person. Comment out
the old part and modify accordingly:

/*
apples_per_person=number_of_apples/number_of_people;
*/
apples_per_person=(1.0*number_of_apples)/(1.0*number_of_people);

GLG 490 Numerical Methods
4

Words not to use as variables

auto, break, case, char, const, continue, default, do, double, else, enum, extern, float, for, goto, if, int,
long, register, return, short, signed, sizeof, static, struct, switch, typedef, union, unsigned, void, volatile.

Conditionals, Looping, and if

Write the following code as tutorial2.c

#include <stdio.h>
#include <stdlib.h>

/* This code was written by me to examine why integer division may be useful */

int main(void)
{

int number_of_required_vans;
int number_of_students;
int number_of_instructors=3;
float number_of_instructors_per_student;
int number_of_seated_people;
int max_students=30;
int people_per_van=6;
int total_number_of_people;
int modulus;

for (number_of_students=1; number_of_students<=max_students;number_of_students++)
{

/* examine how integer division is used to calculate this */

total_number_of_people=number_of_students+number_of_instructors;

number_of_required_vans=total_number_of_people/people_per_van;

 /* using the modulus, % */

if (total_number_of_people%people_per_van > 0)
{
 number_of_required_vans++;
}

GLG 490 Numerical Methods
5

number_of_instructors_per_student=(number_of_instructors*1.0)/(number_of_students*1.0
);

 fprintf(stdout,”students: %d vans: %d instructors_per_student: %f\n”,
number_of_students, number_of_required_vans, number_of_instructors_per_student);

}

return 0;
}

Conditionals

> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
== Equal to
!= Not equal to
&& AND
|| OR

More on conditionals

Type the following code, and name the file tutorial3.c

#include<stdio.h>
#include<stdlib.h>

int main(void)
{

int number;

 for (number=0; number<=20;number=number+2)
 {

 fprintf(stdout,”\nnumber: %d\n”, number);

 if (number<5)
 {
 fprintf(stdout,”This number is less than 5\n”);

GLG 490 Numerical Methods
6

 }
 else if ((number >=5) && (number<=10))
 {
 fprintf(stdout,”This number is between 4 and 11\n”);
 }
 else
 {
 fprintf(stdout,”The number is greater than 10\n”);
 }

 if ((number==4)||(number==6))
 {
 fprintf(stdout,”The number is either 4 or 6\n”);
 }

 if (number!=8)
 {
 fprintf(stdout,”The number is not 8\n”);
 }
 else
 {
 fprintf(stdout,”Wow, this number must be 8\n”);
 }

 }

return 0;
}

GLG 490 Numerical Methods
7

